skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "SOBERÓN, PABLO"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 30, 2026
  2. We study the existence of fair distributions when we have more guests than pieces to allocate, focusing on envy-free distributions among those who receive a piece. The conditions on the demand from the guests can be weakened from those of classic cake-cutting and rent-splitting results of Stromquist, Woodall, and Su. We extend existing variations of the cake-cutting problem with secretive guests and those that resist the removal of any sufficiently small set of guests. 
    more » « less
  3. Abstract Many results about mass partitions are proved by lifting $$\mathds {R}^d$$ to a higher-dimensional space and dividing the higher-dimensional space into pieces. We extend such methods to use lifting arguments to polyhedral surfaces. Among other results, we prove the existence of equipartitions of $d+1$ measures in $$\mathds {R}^d$$ by parallel hyperplanes and of $d+2$ measures in $$\mathds {R}^d$$ by concentric spheres. For measures whose supports are sufficiently well separated, we prove results where one can cut a fixed (possibly different) fraction of each measure either by parallel hyperplanes, concentric spheres, convex polyhedral surfaces of few facets, or convex polytopes with few vertices. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)